Как преобразовать однофазную сеть в трехфазную для подключения двигателя
Трехфазные электродвигатели в быту и любительской практике приводят в действие самые различные механизмы - циркулярную пилу, электрорубанок, вентилятор, сверлильный станок, насос. Чаще всего используются трехфазные асинхронные двигатели с коротко- замкнутым ротором. К сожалению, трехфазная сеть в быту - явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют:
♦ фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя;
♦ тринисторные «фазосдвигающие» устройства, которые еще в большей степени снижают мощность на валу двигателей;
♦ другие различные емкостные или индуктивно-емкостные фазосдвигающие цепи.
Но лучше всего - получить трехфазное напряжение из однофазного с помощью электродвигателя, выполняющего функции генератора. Рассмотрим схемы, позволяющие, имея однофазное переменное напряжение, получить две недостающие фазы.
Примечание.
Любая электрическая машина обратима: генератор может служить двигателем, и наоборот.
Ротор обычного асинхронного электродвигателя после случайного отключения одной из обмоток продолжает вращаться, причем между выводами отключенной обмотки имеется ЭДС. Это явление дает возможность использовать трехфазный асинхронный электродвигатель для преобразования однофазного напряжения в трехфазное.
Схема № 1. Например, обычный трехфазный асинхронный электродвигатель с короткозамкнутым ротором для этого применил С. Гуров (с. Ильинка Ростовской обл.). У этого двигателя так же, как и у генератора, имеются: ротор; три статорные обмотки, сдвинутые в пространстве на угол 120°.
Подадим на одну из обмоток однофазное напряжение. Ротор двигателя не сможет самостоятельно начать вращение. Ему необходимо каким-либо способом дать начальный толчок. Далее он будет вращаться за счет взаимодействия с магнитным полем одной обмотки статора.
Вывод.
Магнитный поток вращающегося ротора наведет ЭДС индукции в двух других статорных обмотках, т. е. недостающие фазы будут восстановлены.
Ротор можно заставить вращаться, например, при помощи устройства с пусковым конденсатором. Кстати, его емкость не обязательно должна быть большой, так как ротор асинхронного преобразователя приводится в движение без механической нагрузки на валу.
Один из недостатков такого преобразователя - неодинаковые фазные напряжения, что приводит к снижению КПД самого преобразователя и двигателя-нагрузки.
Если дополнить устройство автотрансформатором соответствующей мощности, включив его, как показано на рис. 1, можно добиться приблизительного равенства фазных напряжений, переключая отводы. В качестве магнитопровода автотрансформатора был использован статор неисправного электродвигателя мощностью 17 кВт. Обмотка - 400 витков эмалированного провода сечением 4-6 мм2 с отводами после каждых 40 витков.
Рис. 1. Принципиальная схема преобразователя
В качестве электродвигателей преобразователей лучше использовать «тихоходные» двигатели (до 1000 об/мин.).
Они очень легко запускаются, отношение пускового тока к рабочему у них гораздо меньше, чем у двигателей с частотой вращения 3000 об/мин., а следовательно, «мягче» нагрузка на сеть.
Правило.
Мощность двигателя, используемого в качестве преобразователя, должна быть больше, чем подключаемого к нему электропривода. Первым всегда следует запускать преобразователь, а затем подключать к нему потребители трехфазного тока. Выключают установку в обратной последовательности.
Например, если преобразователем служит двигатель на 4 кВт, мощность нагрузки не должна превышать 3 кВт. Преобразователь мощностью 4 кВт, рассмотренный выше и изготовленный С. Гуровым, используется в его личном хозяйстве уже несколько лет. От него работают пилорама, крупорушка, точильный станок.
Схемы № 2-4. Под действием магнитного поля статора в короткозамкнутой обмотке ротора асинхронного двигателя протекают токи, превращающие ротор в электромагнит с явно выраженными полюсами, индуктирующий напряжение синусоидальной формы в обмотках статора, в том числе не подключенных к сети.
Сдвиг фаз между синусоидами в разных обмотках зависит только от расположения последних на статоре и в трехфазном двигателе в точности равен 120°.
Примечание.
Основное условие превращения асинхронного электродвигателя в преобразователь числа фаз - вращающийся ротор.
Поэтому его следует предварительно раскрутить, например, с помощью обычного фазосдвигающего конденсатора.
Емкость конденсатора рассчитывают по формуле:
C=k*Iф/Uсети
где к = 2800, если обмотки двигателя соединены звездой; к = 4800, если обмотки двигателя соединены треугольником; Iф - номинальный фазный ток электродвигателя, А; Uceти - напряжение однофазной сети, В.
Можно применять конденсаторы МБГО, МБГП, МБГТ К42-4 на рабочее напряжение не менее 600 В или МБГЧ К42-19 на напряжение не менее 250 В.
Примечание.
Конденсатор нужен только для пуска двигателя-генератора, затем его цепь разрывают, а ротор продолжает вращаться, поэтому емкость фазосдвигающего конденсатора не влияет на качество генерируемого трехфазного напряжения.
К обмоткам статора можно подключить трехфазную нагрузку. Если ее нет, энергия питающей сети расходуется лишь на преодоление трения в подшипниках ротора (не считая обычных потерь в меди и железе), поэтому КПД преобразователя довольно велик.
В качестве преобразователей числа фаз автором схем Клейменовым В. было испытано несколько различных электродвигателей. Те из них, обмотки которых соединены звездой, с выводом от общей точки (нейтралью) подключали по схеме, показанной на рис. 2. В случае соединения обмоток звездой без нейтрали или треугольником применяли схемы, показанные, соответственно, на рис. 3 и рис. 4.
Рис. 2. Схема преобразователя, обмотки двигателя в котором соединены звездой, с выводом от общей точки (нейтралью)
Рис. 3. Схема преобразователя обмотки двигателя в котором соединены звездой без нейтрали
Рис. 4. Схема преобразователя; обмотки двигателя в котором соединены треугольником
Во всех случаях двигатель, запускали, нажав на кнопку SB1 и удерживая ее в течении 15 С, пока частота вращения ротора не достигнет номинальной. Затем замыкали выключатель SA1, а кнопку отпускали.
Схемы № 5. Обычно концы обмоток асинхронного трехфазного электродвигателя выведены на трех- или шестиклеммную колодку. Если колодка трехклеммная, значит, фазные статорные обмотки соединены звездой или треугольником. Если же она шестиклеммная, фазные обмотки не подключены друг к другу (Я. Шаталов, п. Ирба Красноярского края).
В последнем случае важно правильно их соединить. При включении звездой одноименные выводы обмоток (начало или конец) следует объединить в нулевую точку. Для того чтобы соединить обмотки треугольником, необходимо:
♦ конец первой обмотки соединить с началом второй;
♦ конец второй - с началом третьей;
♦ конец третьей - с началом первой.
А как быть, если выводы обмоток электродвигателя не маркированы?
Тогда поступают следующим образом. Омметром определяют три обмотки, условно обозначив их I, II и III. Чтобы найти начало и конец каждой из них, две любые соединяют последовательно и подают на них переменное напряжение 6-36 В. К третьей обмотке подключают вольтметр переменного тока (рис. 5).
Рис. 5. Схема подключения вольтметра для определения обмоток
Наличие переменного напряжения свидетельствует о том, что обмотки I и II включены согласно, а отсутствие напряжения - встречно. В последнем случае выводы одной из обмоток следует поменять местами. После этого отмечают начало и конец обмоток I и II (одноименные выводы обмоток I и II на рис. 5 отмечены точками). Чтобы определить начало и конец обмотки III, меняют местами обмотки, например, II и III, и по описанной выше методике повторяют измерения.